Wednesday 7 February 2018

Rangkuman Soal dan Pembahasan Gerak Harmonik Sederhana Part 2

Soal No. 3
Sebuah beban bermassa 250 gram digantung dengan sebuah pegas yang memiliki kontanta 100 N/m kemudian disimpangkan hingga terjadi getaran selaras. Tentukan periode getarannya!

Pembahasan
Data:
k = 100 N/m
m = 250 g = 0,25 kg
T = ..... 

Dari rumus periode getaran sistem pegas:


Sehingga:


Soal No. 4
Sebuah bandul matematis memiliki panjang tali 64 cm dan beban massa sebesar 200 gram. Tentukan periode getaran bandul matematis tersebut, gunakan percepatan gravitasi bumi g = 10 m/s2

Pembahasan
Periode ayunan sederhana: 
Dari rumus periode getaran ayunan sederhana:


Sehingga:


Catatan:
Massa beban tidak mempengaruhi periode atau frekuensi dari ayunan sederhana (bandul matematis, conis).

Soal No. 5
Dua buah pegas identik dengan kostanta masing-masing sebesar 200 N/m disusun seri seperti terlihat pada gambar berikut. 


Beban m sebesar 2 kg digantungkan pada ujung bawah pegas. Tentukan periode sistem pegas tersebut!

Pembahasan
Gabungkan konstanta kedua pegas dengan susunan seri: 


Soal No. 6
Sebuah kubus kayu bermassa 220 gram digantung vertikal pada ujung sebuah pegas yang memiliki tetapan 50 Nm-1. Sebutir peluru bermassa 25 gram ditembakkan vertikal ke atas tepat mengenai bagian bawah kayu dan bersarang di dalamnya. Berapakah periode getaran kayu tersebut? (π =22/7)

Pembahasan


Soal No. 7
Sebuah benda bermassa m digantungkan pada sebuah pegas dan bergetar dengan periode 0,5 sekon. Berapa bagiankah massa yang harus dikurangkan pada m agar frekuensinya menjadi dua kali semula?

Pembahasan

Soal No. 8
Tentukan besarnya sudut fase saat :
a) energi kinetik benda yang bergetar sama dengan energi potensialnya
b) energi kinetik benda yang bergetar sama dengan sepertiga energi potensialnya

Pembahasan
a) energi kinetik benda yang bergetar sama dengan energi potensialnya
Ek = Ep
1/2 mν2 = 1/2 ky2
1/2 m (ω A cos ω t)2 = 1/2 mω2 (A sin ω t)2
1/2 m ω2 A2 cos2 ω t = 1/2 mω2 A2 sin2 ω t
cos2 ω t = sin2 ω t
cos ω t = sin ω t
tan ω t = 1
ωt = 45° 
Energi kinetik benda yang bergetar sama dengan energi potensialnya saat sudut fasenya 45°

b) energi kinetik benda yang bergetar sama dengan sepertiga energi potensialnya

Ek = 1/3 Ep
1/2 mν2 =1/3 x 1/2 ky2
1/2 m (ω A cos ω t)2 = 1/3 x 1/2 mω2 (A sin ω t)2
1/2 m ω2 A2 cos2 ω t = 1/3 x 1/2 mω2 A2 sin2 ω t
cos2 ω t = 1/3 sin2 ω t
cos ω t = 1/√3 sin ω t
sin ω t / cos ω t = √3

tan ω t = √3
ω t = 60° 

Energi kinetik benda yang bergetar sama dengan sepertiga energi potensialnya saat sudut fasenya 60°

Soal No. 9
Sebuah balok bermassa 0,5 kg dihubungkan dengan sebuah pegas ringan dengan konstanta 200 N/m. Kemudian sistem tersebut berosilasi harmonis. Jika diketahui simpangan maksimumnya adalah 3 cm, maka kecepatan maksimum adalah....
A. 0,1 m/s
B. 0,6 m/s
C. 1 m/s
D. 1,5 m/s
E. 2 m/s

Pembahasan
Data : 
m = 0,5 kg
k = 200 N/m
ymaks = A = 3 cm = 0,03 m
vmaks = ......

Periode getaran pegas :
T = 2π √(m/k)
T = 2π √(0,5/200) = 2π√(1/400) = 2π (1/20) = 0,1 π sekon


Soal No. 10
Sebuah pegas memiliki tetapan 5 Nm-1. Berapakah massa beban yang harus digantungkan agar pegas bertambah panjang 98 mm? Berapakah periodenya jika beban tersebut digetarkan? (g = 9,8 m s-2)

Pembahasan

Soal No. 11
Suatu partikel bergetar selaras dengan amplitudo A cm dan periode T detik. Jika partikel mulai bergetar dari kedudukan seimbang dengan arah kanan maka partikel mempunyai simpangan sebesar 4/5 A cm dengan arah gerak ke kiri pada saat partikel telah bergetar selama waktu … detik

Pembahasan

NEXT PAGE : 1 2 3